
Mutation Analysis for Model
Transformations in ATL

Piero Fraternali
Massimo Tisi

Test set generation for model transformations

 Several existing criteria for test generation/coverage

Non-native approaches:

 Black-box:

Object oriented

Grammar-based

 White-box:

Code coverage

Native approaches:

 Black-box:

Fleaury

Fraternali, Tisi

 White-box:

McQuillan,Power (a few minutes ago!)

2

Mutation analysis for model transformations

 Given:

a test set (manually or automatically built)

a (supposedly) correct transformation

 Systematic injection of errors in a transformation

creation of mutant transformations

 Estimate of the quality of a test set

based on the rate of faulty programs it detects

“fault revealing power” of the test set

 Estimate of the quality of a test generation or test coverage criteria

3

Our proposal

 Framework for mutation analysis (in a model-driven way)

Fault injection by means of HOTs

 Two levels of HOTs for easier specification of the fault

Implementation in Java and ATL

 But support for different transformation languages

 ATL implementation for well-known mutation operators

11 mutation operators (Mottu, Baudry, Le Traon, 2006)

 Navigation

Relation to same class change

Relation sequence modification with deletion, ...

 Filtering

Collection filtering change with addition /perturbation / deletion

 Output model creation

Class compatible creation replacement

Higher Order Transformations for mutations

 Mutation in ATL by a HOT in refining mode:

Mutation

Massimo Tisi MSDL - MCGILL6

Mutation analysis framework

Original

Transformation

Input Models

Correct Output

Models

Mutated Output

Models

Comparison Tool

(EMF Compare)
Mutation Score

Mutants
Mutants

Mutated Output

Models

Correct Output

Models

Test Models

Mutation Tool

Example

 Collection filtering change with deletion

 „Forgetting‟ filters in input patterns:

rule INDEXUNIT {
from
element : XML!Tag (name = 'INDEXUNIT')

to
result : DSLMM!INDEXUNIT (
[...]
)

}

rule INDEXUNIT {
from
element : XML!Tag

to
result : DSLMM!INDEXUNIT (
[...]
)

}

Multiple application points

 Problem

 the transformation engine would apply it to all the matches at
once.

rule INDEXUNIT {
from
element : XML!Tag (name = 'INDEXUNIT')

to
result : DSLMM!INDEXUNIT (
[...]
)

}

rule INDEXUNIT {
from
element : XML!Tag

to
result : DSLMM!INDEXUNIT (
[...]
)

}

rule DATAUNIT {
from
element : XML!Tag (name = „DATAUNIT')

to
result : DSLMM!DATAUNIT (
[...]
)

}

rule DATAUNIT {
from
element : XML!Tag

to
result : DSLMM!DATAUNIT (
[...]
)

}

Multiple application points

 What we want:

rule INDEXUNIT {
from
element : XML!Tag (name = 'INDEXUNIT')

to
result : DSLMM!INDEXUNIT (
[...]
)

}

rule DATAUNIT {
from
element : XML!Tag (name = „DATAUNIT')

to
result : DSLMM!DATAUNIT (
[...]
)

}

rule DATAUNIT {
from
element : XML!Tag

to
result : DSLMM!DATAUNIT (
[...]

)
}

rule INDEXUNIT {
from
element : XML!Tag (name = 'INDEXUNIT')

to
result : DSLMM!INDEXUNIT (
[...]

)
}

rule INDEXUNIT {
from
element : XML!Tag

to
result : DSLMM!INDEXUNIT (
[...]

)
}

rule DATAUNIT {
from
element : XML!Tag (name = „DATAUNIT')

to
result : DSLMM!DATAUNIT (
[...]

)
}

Higher Order Transformations for Mutations

 Our solution should be:

Model-driven

Transparent for the designer of the mutation

Minimal computational cost

 Apart from running N times a transformation

No change to the standard transformation engine

 Our proposal: pre-processing the mutation operator

Transforming an HOT

Second order (or third order?) HOT

Massimo Tisi MSDL - MCGILL11

Mutation analysis framework

Original

Transformation

Mutation

Transformation

(HOT)

Transformation

Model

Mutation

Operators
Input Models

Correct Output

Models

Mutated Output

Models

Comparison Tool

(EMF Compare)
Mutation Score

Motant Models

Mutants
Mutants

Mutation

Operators

Motant Models

Mutated Output

Models

Correct Output

Models

Transformation Model

Injection

Mutants Model Extraction

+ Compilation

Mutation Operators pre-

processing (HOT)

Test Models

Mutation Tool

Higher Order Transformations for Mutations

Input
Metamodels

Mutation
Transformation

HOT

Original
Transformation

Output
Metamodels

Mutant N

Trace Model

Trace Model

conforms to

Trace Model

User-provided
mutation HOT

Higher Order Transformations for Mutations

Two rules are generated from the user provided HOT.
Helpers control the execution (with constant cost)

A first rule to identify and record matching points in the trace model at the
first run:

Original LHS

True at first run

No changes

Recording of the matching point

Higher Order Transformations for Mutations

A second rule to generate single mutations at the next runs:

True once per run

Original RHS

Trace update

Future Work

 Equivalent mutants

What happens if the mutant is „correct‟?

 Example: if the filter was superflous

 A validated fault model for transformation languages:

Do transformation languages have a common set of mutation operators ?

Is there a set of mutation operators for transformation languages that are
inherently language specific ?

Howto:

 Develop mutation operators for transformation languages

 Compare the mutation scores relative to different mutation operators applied
to the same test set

 Identify equivalent mutation operators among different transformation
languages

Thanks

